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FOREWORD

This report was prepared by James D. LaRue of the Guidance Section, Guidance and
Control Branch, Systems Analysis Division, Directorate of Advanced Systems Planning,
Deputy for Technology, Aeronautical Systems Division, Wright-Patterson AFB, Ohio. The
work was accomplished under Project No. 5401, ‘‘Advanced Systems Synthesis and Analy-
sis Methods."’

This report was originally submitted by the author in partial fulfillment of the require-
ments for the degree of Master of Science in Electrical Engineering. The studies present-
ed began in March 1962 and were concluded in September 1962,
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ABSTRACT

The probability of success equations for redundant networks are derived from basic
component failure statistics. The components have two modes of failure, open or short.
The report calculates the equations for four basic redundant networks. A network is then

designed based upon these results. The reliability of this network is calculated and com-
pared to several other designs,

Publication of this technical documentary report does not constitute Air Force approv-

al of the report’s findings or conclusions, It is published only for the exchange and stimu-
lation of ideas.

S
Aol 2 Caieras”
, LYLE H, CORSAW

‘/Acting Chief, Systems Analysis Division
Directorate of Advanced Systems Division
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DEFINITIONS
Density Function, f(t) - The probability that an event of a given random variable will occur,
expressed as a function of that variable.

Disjoint - Two events are disjoint if the occurrence of one excludes the occurrence of the
other,

Distribution Function, F (t) - The probability that in a random event, the random variable
is not greater than some designated value,

Failure - The event of unsatisfactory response of a component or device. The failure of
a resistor can be specified quite easily whereas the failure of a computer is quite diffi-
cult to specity due to the large number of possible modes of unsatisfactory response.

Failure Rate - The ratio of the probability that failure occurs in the interval, given that
it has not occurred prior to t, the start of the interval, divided by the interval length. The
formula for failure rate is
P(t) - P(t + At)
At . P ()

Hazard Rate, z (t) - Also called instantaneous failure rate. Defined as the limit of the
failure rate as the interval length approaches zero.

z(t) = lim P() - P(t +« At) = { (1)

At-o At P(1) P (1)

Mean time between failures, MTBF - The arithmetic average of the time to failure of

all the items considered. This mean value has meaning only when the distribution functuon
of the failures is known.

Probability of Success, P (8) - The ratio of favorable events to total events.

Random Process - An ensemble of time functions {kX(t)}'

- ect<®, k=1,2,3, .. such that the ensemble can be characterized through statisti-
cal properties.

Redundancy - The condition which exists if an element can fail in a network and the net-
work continues to function. If elements are switched in and out of the circuit the redundan-
cy is known as passive, If the elements are energized until failure, the redundancy is
known as active,

Relubm!g. P g:s - The probability that a device will operate successfully for a given
peri tme operated under specified conditions,
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INTRODUCTION

A method of applying probability theory to design procedures is presented. An in-
creasing percentage of electronic equipment designed today must meet some standard
of satisfactory operation. The design engineer must design his equipment to reach or
exceed a definite reliability goal, This goal can be a specified mean time to failure or
a probability of successfully operating a given number of hours. It is the intent of this
report to review the current accepted techniques in predicating reliability of electronic
equipment and then use probability theory to design networks which are extremely re-
liable as compared to conventionally designed networks.

CURRENT TECHNIQUES

Reliability is a relatively new science. The first concerted effort to gather failure
data was started early in 1950. By 1955 prediction techniques were formulated using
the statistics generated by the collection of failure data. B, Epstein of Wayne University
and M., Sobel of Bell Telephone Laboratories did much of the early sifting of these failure
statistics. Arinc Research Corporation acting on behalf of commercial airlines was very
active in these early investigations. It was already known by 1950 that the times of wear
out failure followed a normal distribution, A great amount of information is implied in
the statement ‘‘times of wear out failure followed a normal distribution.”’ The length of
life of an incandescence light bulb is a random variable. The standard method of describ-
ing a random variable such as bulb life is to state the probability of the light bulb reach-
ing or exceeding some value of bulb life. In other words, what is the probability that a
given 50 watt light bulb will operate at least 500 hours when operated under standard con-
ditions. The random variable is bulb life; the random event is the failure of the bulb to
work? If a large number of bulbs are placed on life test, time of the failure being record-
ed, the mean life and dispersion around the mean can be calculated. The probability of a
50 watt bulb reaching 500 hours is then the ratio of bulbs operating at 500 hours to the
total number starting the test. The plot of probability of reaching some value of time as
a function of time is known as the cumulative distribution function. The word ‘‘normal’’ de-
scribes a particular shape to this plot. Bearings, clutches, motor brushes, internal com-
bustion engines all have failure records which support the wear out - normal distribution
relationship, Wear out failures are not the only type of failures to occur. For example,
with car tires one type of failure is the wearing off of tread. A second type of failure is
caused by road hazards. If a tire runs over a road hazard, a blow-out occurs, The first
type of failure follows a normal distribution with the random variable being mileage ra-
ther than time. The second type of failure is characterized by having a constant risk. The
constant risk implies that there are a fixed number of road hazards per 1000 iniles. This
number of hazards is not a function of the number of miles driven. A random event which
is associated with a constant risk can be shown to possess an exponential probability func-
tion,

But resistors, capacitors, semiconductors, and other electronic components do not
wear out in the accepted sense that something is worn or eroded away. Yet random
failures of these components do occur.

Sobel and Epstein have written several papers dealing with the statistics of life test-
ing. The random variable recorded during life testing is the time of failure of the device.

Manuscript released by the author 14 December 1962 for publication as an ASD Technical
Documentary Report.

1



ASD-TDR-62-1072

When electronic equipment is placed in life test under the environment for which it was
designed, the time of failure is distributed in accordance with the exponential probability
distribution function.

Figure 1 illustrates the normal distribution and the exponential distribution as well as
illustrating values of terms commonly used in reliability, For both the normal and the ex-
ponential life test 90 items were placed on test.

The data for figure 1 is not from a real test; therefore, the resulting curves are more
nearly perfect than would be expected from actual life tests, The number of failures which
occurred during each hour of operation is given, Failure rate is the ratio of units failed
during the hour interval to the number of units entering the hour. The sum of survival rate
and failure rate is unity. Probability of survival is the ratio of units surviving the hour to
the total number of units starting the test.

Before examing the failure data of several electronic systems the method of validating
the postulated distribution of the random failures must be explained. One method of accept-
ing or rejecting the postulated distribution is known as the Kolmogorov-Smirnov one sam-
ple test. The method involves tabulating the cumulative distribution functions, survival
curve figure 1, of the actual failure data and the postulated cumulative distribution function.
It can be shown that the absolute difference between the two functions is itself a random
variable with a known distribution. The method is called one sample because the maximum
absolute difference is calculated and serves as a criteria for acceptance or rejection of
the postulated distribution. The maximum absolute difference is compared to a table of
critical values of difference in the Kolmogorov-Smirnov one sample test. L for a given
sample size and level of significance the maximum absolute difference is less than the
tabular value, the postulated distribution is the best fit that can be had. The level of sig-
nificance is an indication of the error in accepting the postulated distribution when the
postulated distribution should be rejected. The usual value for this is 0.05 or 5 times out
of 100 the postulated distribution will be accepted when it should be rejected.

The Radio Corporation of America in conjunction with the Air Force has collected
failure data on hundreds of ground based electronic systems, Radar, navigation, and com-
munication equipment were included in this study. Table 2 is a Kolmogorov-Smirnov one
sample test for an AN/FPS-3, ground based radar. The main points of interest are:

(1) Large number of failure, 116
(2) Mean life 55 hours, 6409/116 = 55 hr,
(3) The exponential distribution fits the data.

Figure 2 is a plot of probability of success versus operate time. The exponential is
very close to the actual data. Arinc Research Corporation investigated the AN/APS-20E
airborne radar. Their objective was to modify the radar such that the radar becomes more
reliable. Figure 3 is a plot of four curves, two exponential and two observed. The unmodi-
fied and the modified systems are seen to follow an exponential distribution.

Figure 4 is a plot of probability of success for a vacuum tube, 2D21W, The basic ex-
ponential probability of success is very closely approximated, This data came from re-
liability studies of electronic equipment on the USS Forestal during 1958 and 1959,

The concept of hazard or risk was discussed with failure modes of tires. The mathe-
matical definition of hazard is ‘‘The probability that a failure will occur in the next in-
stant of time, assuming previous survival.’’ Using this definition equations can be

2
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developed which relate the hazard equation to the reliability function, If the hazard is known
to have some function of time, the reliability as a function of time becomes specified. Sev-
eral component manufacturers have invegtigated the hazard function of their components.
The following equations show the relation between a constant hazard and the exponential
reliability function, If a component manufacturer can show a reasonably constant hazard,
then the assumption of an exponential failure rate is valid. In reliability literature the term
failure rate is utilized rather than hazard. Throughout this report hazard and failure rate
will be used interchangeably although failure rate is an incorrect (mathematically speak-
ing) concept.

P s(t) - relability function - probability of success
Pg(t) - unreliability function - probability of failure

P(t) + Pp(t) =1 (1)
dP_(t)
ax f(t) - probability density function (2)

f(tl) dt - probability of failure in the interval dt centered at Y

\(t) - hazard or failure rate

Hazard is a conditional probability function as it is a function of the probability of
operating to a given time coupled with the probability of working in the next interval. The
relationship between hazard, probability density function, and the reliability function can
be developed by the use of conditional probability theory. This approach is very erudite
and not in line with the intent of this work, Therefore, rather than including several pages
of abstract mathematics showing the relationship between hazard, probability density func-
tion, and reliability function, it will be defined as the ratio of the probability density func-
tion to the reliability function,

&)

iy

8
If the hazard is constant, then equation (3) can be written as:
1 dli1-p KON
e ——
O m (4)
-1
P(t)

At =-ln Ps(t)

5
Pg(t) = e M ©)

Where P s(t) is the probability of success as a function of time when the hazard is con-
stant,

The mean value, , of a random variable is the limit of the sum of the assumed values
when each value is multiplied by its appropriate probability of occurrence.

4
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TABLE 2
OBSERVED AND THEORETICAL RELIABILITY FUNCTIONS FOR AN/FPS-3
TIME OF TEST - 6409 HOURS TRUE FAILURES -116
MEAN LIFE (m) -53 HOURS d (mox)}(0.05) = 0.126
CUMULATIVE CUMULATIVE THEORETICAL ABSOLUTE
PERIOD FAILURES PROBABILITY  CUMULATIVE VALUE
PROBABILITY plo)-ple)
t(he) 0 plo) ple)z @~ V/M™ d
O or more 1ne 1.000 §1.000 .000
10 or more 96 .828 .834 .006
20 or more 7 .664 .69% 031
30 or more (-X] . 526 .580 054
40 or more $3 . 457 . 484 .027
50 or more 45 .388 .404 .016
60 or more 38 . 328 . 336 .008
70 or more 29 . 250 .281 .03
80 or more 2\ . 181 . 235 .054-d(mox)
90 or more '8 158 .194 .039
100 or more 15 129 162 033
11 0 or more I3 12 . 135 .023
120 or more i . 09% 13 .018
130 or more 10 . 086 . 094 .008
140 or more 10 . 086 . 078 .008
150 or more 10 . 086 .06% 021
160 or more 8 .069 .0%4 015
170 or more 8 .069 .046 .023
180 or more 7 .060 .038 .022
190 or more 6 .0%2 .032 .020
200 or more 3 .026 . 026 .000
dimox) = 0.054 d{mox)(0.05) = 0.126

Therefore,the observed cumulative probability fits the theoretical cumulative probability
distribution at a 5 percent level of significance.
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a0
ue= Ltof(t)dt

® oAt
= Lt( =) de

we + (6)

The mean value is also the arithmentic average, T, of the random events. This
arithmetic average is known as the mean time before failure, MTBF,

= 1
MT;

e XL /T @)

This identity is used throughout the report.

Figure 5 presents the causes of failure which are present during the life of a semi-
conductor. The curve is often called the bath tub curve for obvious reasons. The curve
represents the experience General Electric engineers have had in the production and
life testing of semiconductors,

Figure 6 is a plot of failure rate for several Philco transistors. Figure 7 is a plot
of the Kolmogorov-Smirnov test for exponentiality of the 2N496-2N495 2N1118-2N119,
If the stepped line crosses the UCL, the hypothesis of exponential failure is rejected.
This data came from a Philco report entitled ‘‘Reliability Report on the Philco SAT
Transistors'’ dated 1960.

The strong belief in components possessing an exponential distribution is also based
upon the serial nature of most electronic networks. The serial nature concept has one
basic assumption; all components must perform satisfactorily or the system fails.
Probability theory dictates that under these conditions the probability of success of the
overall system is the product of the individual component probabilities of success.

N
P (system)= P, (component) (8)
jU 1 i

Ample data substantiates that the system probability of success is exponential, The
only mathematical form which P; can be is a constant or an exponential.

Since the system probability of success is the product of the individual probabilities
of success the system failure rate is the sum of the individual failure rates assuming an
exponential distribution.

Pk AP T A L ®)
N

e Mt e-int (10)
i= )

10
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where 1, - system failure rate
3, - Nth component failure rate

The failure rate of each type of component is obtained either from the component
manufacturer, life test data, field data or from any of the many tabulated listings now
available. One such source is a report by Arinc Research Corporation entitled ‘‘A Re-
liability Study of Microwave and Transmitting Tubes, Semiconductors, Relays and Other
Parts,’’ dated September 30, 1960.

What ultimately determines the validity of the exponential distribution as a reliability
predictor, that is the summing of individual failure rates to form system failure rate,
is the designing of a complex electronic device to a definite reliability goal. In 1959 the
Radio Corporation of America agreed to build for the Air Force an airborne data link
which had to possess a minimum acceptable mean time to failure of 200 hours. At the end
of 10,120 hours of accumulated test hours the calculated mean time to failure was 211
hours,

PURPOSE

Suppose the design engineer is given the task of designing an electric network which
must exhibit a minimum acceptable probability of success. This implies that the network's
failure rate, summed up from all components, must be below some value, For purposes
of discussion the design engineer is using failure rate data which is up to date and ac-
curately represents the components he will use. The problem arises when the summed
failure rate is greater than the acceptable failure rate.

In the last several years this problem has arisen and has been solved by using passive
redundancy. In redundant design those subsystems which have a high failure rate are
either placed in parallel or series and switched on and off as needed. Thus, early effort
in redundancy centered upon complete assemblies, for example two complete photo elec-
tric tubes and associated circuitry were used in star trackers. If phototube A failed, then
phototube B was switched on to operation. Generators and motors fall into this category.

This technique works for certain items; however, in an airborne digital computer
which employs 8,000 transistors, 24,000 resistors, 32,000 diodes, 7,000 capacitors none
stand out as critical or frequent failures, Should the entire computer be duplicated and
carried as a spare? Or should the individual resistors, capacitors, transistors, and others

be made redundant so that failures of individual components will not cause network fail-
ure?

The present accepted method of analyzing the gains in reliability due to redundancy
considers all failures are identical. This was adequate for passive redundancy where
the failed element is switched out of the circuit. In active redundancy failed elements are
not switched out, but remain in the circuit. It is quite clear that the mode of failure of
an actively redundanded element affects the operation of the network. For example, par-
alleling of dindes is one example of active redundancy. If a diode shorts, then the net has
failed; however, an open diode still permits network operation, In this report redundant
networks are examined and the probability of success equations are derived on the basis
that some elements will fail in an open or short.

12
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REDUNDANT NETWORKS
Probability of Success Equations
The usual form of redundancy consists of two or more identical elements arranged
in a parallel or seriee contiguration. If the mode of failure is a short, then two elements
in series constitute redundancy. If the mode of failure is an open, then two elements in
parallel constitute redundancy.
q, -probability of short
q, -probability of open
Figure 8 - Parallel Network
Pg =1 - qg - q, probability of success of each element. Two arithmetic operations
used frequently in probability are P(A + B) and P(A,B). P(A + B) denotes the probability
that either A or B or both occur. P(A,B) denotes the joint probability that both A and B
occur,
P(A +B) = P(A) + P(B) - P(A,B) (11)
P(A.B) = P(A) * P(B/A) = P(B) - P(A/B) (12)
P(B/A) is the probability of B occurring, given that A has occurred.

Two events are said to be mutually exclusive if

P(A,B) = 0 (13)
Thus

P(A + B) = P(A) + P(B) (14)
Two such events are mutually independent if

P(A,B) = P(A) . P(B) (15)

By definition 94-95 * 0 since one element cannot open or short.

To determine the probability of success or its equivalent the probability of failure of
any network, the problem is to form a list of all events which will cause the network to
perform successfully or unsuccessfully depending, of course, upon which probability is
being formulated. If both probabilities are formulated, then none of the terms in one list
will appear in the other. Mathematically these lists or sets are said to be mutually ex-
clusive. The individual lists must comprise all the events leading to the particular mode
being formulated. If a list is complete, then the list is said to be exhaustive, The term
disjoint is used interchangeably with mutually exclusive. It may be easier to form an ex-
haustive set of disjoint events comprising successful operation or it may be simpler to
operate on the failure events, With the parallel configuration it is easier to work with
failures since two mutually exclusive events form an exhaustive set of failures.

Let o represent the probability that element 1 or 1l shorts
Let # represent the probability that both element I and 11 opens.

13
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Then the probability of failure, PF. of figure 8 is

Pp=a+h (16)
a=q +q,-q;° (17)
puqo.qo (18)

PF-qu-qs°+qo’ (19)

Pg=(l-9)°-q? (20)

The same approach is used for figure 9.
Figure 9 - Series Network
The exhaustive set of disjoint failures is arrived at as follows:

a i8 the probability that element 1 or 11 opens,
g is the probability that element | and element 1l shorts

PF =g +p 21)
a=2q -q? (22)
B = 9.’ (23)
Pg=(1-q)-qg (24)
The series parallel network presents a similar problem.
1]

Figure 10 - Series Parallel Network

It can be shown that two mutualiy exclusive failure events can form an exhaustive set,
and the problem may be solved in this manner. A far simpler method is to regard figure
10 as a series network such as figure 11, ’

l H
A B

Figure 11 - Serial Representation

Now 9 of unit A is as follows

a4y (M) =q (1 + g () - q_ (1) . q_ (Il (25)

14
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Then for identical units

g, (A) = g, (B) (26)
q (A)=2q,-q," @27)
a,(A)=q, (B)=q, (1) .q () =q, (28)

Substituting equations (27) and (28) into equation (24) yields the probability of success
directly as

Pg=(1-95°)" - 2q, - q?)y (29)
Pg=(1-qf - r1-(1-2q,+ g7 (30)
Pg=(1-q2P - [1-( -q) 7 31

The parallel series configuration, figure 12, can be solved in the same manner.

{1} {11}
J —J
1’ lllll l|lV Ll

Figure 12 - Parallel Series

Following the same approach, equation (20) which was developed for the parallel net-
work, the probability of success equation may be written as

Ps-(l-q;')' -@29q,-q}) (32)
Pg=(l-q2P -(1-(1-qpP" (33)
Table 3 - Redundant Network Equations
Configuration Eﬁ Equation Minimizes
Parallel Q- qs)' - qo’ Opens
Series a- qo)’ - qs’ Shorts
Series Parallel a- qo’)’ -f1-qQ1- qs)' bk Opens
Paraliel Series (- qs’)' -{1-Q- c‘o)a j® Shorts

15
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The series parallel network is sensitive to shorte. This can be shown by expanding
equation (31).

Pg=(1-2q+q%)- (295 +9g") (34)
dropping 3rd order terms and higher
Pg=1-2q72 -4q.3 (35)

Ifq <0.1 and qg < 0.1 the approximation is valid and equation (35) shows the effects
of openB and shorts. Depending upon the relative frequency of occurrence of shorts and
opens of a particular component one can choose the redundant configuration which yields
optimum reliabiliry, °

The equation for the parallel network is an image of the series network. By putting in

for q, and q,, for qg in the parallel case, the series equation results. The same re-
lation holds for the series parallel and parallel series. We will use this identity later in
the report. If equations are developed for the parallel or series parallel network, they
can be converted to the series or parallel series by the above process.
Time Dependent Probability of Success Equations

To derive the time dependent probability of success equations when utilizing components
which fail in two modes, a brief discussion of the component’s probability of success equa-
tions is necessary.

The probability of success equation derived for the parallel network is:

= - - 2
PS (1 qs)" 9 (20)

To express the probability of success as a function of time, 9, and q should be ex-
plicit functions of time.

Multi-Mode Exponential Function
It is known that the components used in the network have two failure states, open or
short, It is postulated that the distribution of failures due to open or shorts is exponential
in nature. The form of the probability density function for the random events known as
shorts and the random events known as opens will now be derived.

Two equations are used to derive these probability density functions. They are:

N
1=P + T q (36)
i=1

-t/T 37
Ps =g 37

16
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Ps is the probability of the component operating succesafully, and has been shown to
be an exponential function. q; is the probability of failing in the ith mode. The sum of the
probabilities of failing in all disjoint modes plus the probability of success (not failing in
any of the above modes) must equal one.

N
P.=1- Yqj where P_ is probability of success
S A S
(36)
i=1
N is the exhaustive sum of probability
T Qi of disjoint of failure events
i=1
Pg = e /T known 37)
. N .
Ps =- 3 q time derivative (38)
i= 1
et/ 'I: - N . »
= rg (39)
i=1
Consider two modes of failure namely that of open or short.
-t/i . . q, - probability of open
—— qD + qs (40)
T q - probability of short

It is reasonable to postulate that q and_c'ls must be exponential since the left hand side
of equation (40) is exponential, Therefore, q'%and q, are assigned an exponential function
T

with an arbitrary coefficient yet to be determined.
. -t/T
~AY (41)
T
+ B -yT
q, =— e 42
- (42)
G = AfL-e™/T) (43)

17
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q = B(l- VT (44)
Ps =1l-q -q (45)
eVT o) “A+B)(1-eY T) (46)
A+B =1 47)

To determine A and B, consider N units are on life test. At some T, M units will have
failed. These M failures are comprised of O opens and S shorts. If q is the probability
of having a failure by time T

q=1-e -&- (48)

qQ=q,+9q, (49)

q = A(1-e /Ty (43)

Now qotla the probability of having an open at time T. This is the ratio of total units
on test to the units having opens at T,

%'S-Aa-e'T/T)-A.% (50)
] (51)

A M

Therefore A is the ratio of units failed to units failed with open. B can be written as

Ba=S_ (52)

M

Given test data on a particular component A and B can be determined, This is discussed
in the section on Quad Design.

Redundant Network Equations
The probability of success equations for the parallel and series networks are

Pg = (1-q,P -q° (20)

Pg=(1-9q7-qg? (25)
18
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T

)19 - as - e/ T

Pg = 11 -B(l - et/ y (53)

-t/T

)12 - B3(1 - et/T

Ps-[l-A(l-e > (54)

The probability of success equations for the series parallel and parallel series are

Pg=(@-qp2P-11-Q-q)w (31)

Pg= (1-q2F-[1-(1-q)pP (33)
Once again direct substitution of 9qg and 9, yields

Pg = [1- A% -e"/T)=]= -{r-n-8 (l-e-t/T)]’}’ (55)

Pg = [1-B%(1- e /Ty -{1-11-aq -e"/T)]=}= (56)

Table 4. Time Dependent Redundant Network Equations

Network Reliability Equation Sensitivity
Parallel (1-B(1-e”Y/ T)]a -A3(1-e YTy Shorts
Series t1-A-e ¥ T)p-pag-e/Tya Opens
Series Parallel [1-A3(1 -t T)' )2- { 1-[1-B(1 eV T)]’} 3
’ Shorts
Parallel Series [ 1-B2(1 -e-t/T 2y°- {l—l’ l-A(l-e-t/T) ]'} ?
Opens

Figures 13 - 17 plot the relationship of probability of success versus time for the
single unit, parallel, and the series parallel network. While the points are plotted to twice
the mean life the useful portion is out to about 0.4 T,

Figure 13 shows that the parallel network is superior to the series parallel when only
opens occyr, A = 1. In these figures, the single unit is represented by a straight line

since et/ T on semi-log paper is a linear function,

Figure 14, A = 0.9, B = 0.1, shows the series parallel unit slightly better than the
parallel unit. As the probability of shorts increases the series parallel unit becomes more
reliable than the parallel unit. The series parallel unit reaches its most reliable mode
when A = 0.7 and B = 0,3, These values are taken from the curves rather than differen-
tiating equation (55) with respect to A and setting the result to zero and solving for A

which gives max Ps' When A = 0.5, B = 0,5 the parallel unit becomes equivalent to a
single unit.

19
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QUAD NETWORK THEORY

The purpose of this section is the orderly development of the probability of success
equations of the Quad. The quad network is a network of four blocks arranged in a parallel-
series or series- parallel mode. These blocks may be identical or non-identical, one-

element or multi-element, Figure 18 shows the two basic quad networks within quad net-
works

Figure 18. Quad Networks

A network has been designed and built both in an unquaded and in a quaded state to
show the results of quading. This network is shown in figure 19,

W
INPUT —|€

>
> R
4

$Re
3 Ra \& + OUTPUT
1 SR3
L! CRI
=

Figure 19. Impedance Transformer Network

We desire to make this network as reliable as possible. Assume that this network is a
very critical link in a satellite transmitter. One way to increase reliability would be to
parallel two identical networks, figure 20. This technique will be analyzed and compared

to the quad,
l Ece
$ r2 RI
ct
1(—
INPUT o— i€ T oUTPUT
\ ' °
Ra3 CR
$R3
L i
~ -’L -\

Figure 20. Parallel Transistor Network

25



ASD-TDR-62-1072
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Figure 21, Series Parallel Transistor Network

A continuation of this idea would be to make a series parallel arrangement, figure 21.

A less obvious design would be to redund the components.themselves. For example,
the transistor can fail in open or short. The quad approach would yield figure 22,

1

!

Figurc 22. Transistor Quad
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Failure mode analysis will indicate whether the dashed line should remain or be re-
moved. Before a circuit can be quaded on a component level knowledge of the failure modes
of the components must be possessed. Knowing the A and B figures we can determine the
most reliable network configuration for a particular component. For any component we
have the choice of a parallel, series, series parallel, or parallel series network. Table 5
is a tabulation of failure mode data for typical electronic components. The data is used to
illustrate the method developed in this report. To design a quad using particular compo-
nemts, if it is at all possible, use data based upon life tests on that component. This data
would be far superior to table 5. The relative size of A and B is the most important.

Going back to figure 22 the question was raised as to the line connecting the parallel
branches. Table 5 gives an A of 0.84 for the transistors tested. Figure 15 shows that the
series-parallel network is8 more reliable than the parallel network. The concept of images
as developed earlier in the report coupled with table 5 tells us that the parallel series is
less reliable than the series parallel. Therefore, the line remains in,

Resistors and inductors are assumed to fail only in open, never in short, Capacitors
are assumed to fail only in short, never in open. Figure 13, plot of reliability of several
networks for A = 1.0, B = 0, shows that the parallel network is more reliable than the
single unit or the series parallel for the resistor. This implies that for the capacitor the
series network is more reliable than the single unit or the parallel series.

To quad the components of figure 19 using the data on table 5, figure 23 results.

Table 5 Failure Data

Number Failure*

Tested Failures N (S) N (0) Rate
Component (X 103) Short Open N (F) N (F) (X 10-¢)
Transistors 98 79 423 .16 .84 0.03
Diodes 447 67 348 .16 .84 0.2
Capacitors 215 3 0 1 0 0.09
Resistors S00 0 0 -- - 0.014
Inductor -- -- -- -- -- 0.001

A-NO g - NG)

N (F) N (F)

*The failure rate information was taken from ASD Report 61-580,
We desire to derive an equation which relates probability of success as a function of

time for figure 23. Figure 24 represents figure 23 where blocks I and lIl are resistor
networks 3 and 4. Block II is the remainder.
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—{ 1T up—urp—

Figure 24 - Simplified Network

The probability of success of figure 24 is

Pg = P(I) - P(1) - P(lID) (57)

1o /TR

P(1) = P(lll) = 1 - ( )y (S8)

Py = Pl = 2 e’V TR /TR

(39
Equation (58) is the probability of success of a parallel network, equation (53), with
A=1,B=0,

Block II is the transistor quad with the necessary input and bias networks, see figures
22 and 23. The first problem is to derive the probability that one transistor ensemble
will open and the probability that one transistor ensemble will short. Each ensemble con-
sists of:

Item Quantity Components
Transistors 1 1
Parallel resistor network 2 2
Parallel inductor network 1 2
Series capacitor network 1 2
Series parallel diode network 1 4

The events which will cause an apparent short across terminal a-b, transistor 1 in
figure 23 will be tabularized.

Table 6. Events Causing Short

Basic
Events Symbol Probability Equation
Transistor shorts q,(T) B.(1 - eV 'I'I‘) 44
-t/TC
Capacitor network shorts qS(Cl) 1-e ? 54
Diode network shorts q4(CR) (1-11-Bgp(l- e't/TCR) 12)3| 56

For the ensemble to fail in open one of the following events must occur,
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Table 7, Events Causing Open

Basic
Events Symbol Probability Equation
~ -tTR,
Rl network opens qo(Rl) (1-e ) 53
-t/TR
R2 network opens qo(R2) (1-e )3 53
Inductor network opens q,(L) Q1 - et/ TL)’ 53
Transistor Opens q,(T Al - e ’I'I‘) 43
Diode network opens 9,(Cp) L= (1-88 1 - /TRl 55

By listing the short events the probability, QS, that one transistor ensemble will short
is calculated by summing the probability of occurrence of all disjoint short events.

QS = q(T) + 9 (C)) + a(T) q (C)
-q,(Cg ) 94(C)) - 9. (CR) q (D (60)
+94(CR) q_(C)) q(T)
An alternate method is to calculate the probability, P, that the ensemble will not short.
Pg is the product of the individual ‘‘not probabilities’’, Pss is the probability that the ca-

pacitor network will not short, that the transistor will not short, and that diode network
will not short.

Py = [1-9,(M)-[1-q,(C)7 - [1-q(CR) (61)
The probability, QS, of short is

QS = 1-P; = 1-{1-q ()] - [1-q,(C)] - [1-q,(CR)] (62)

The reader can expand 62 to show the identity with 60,
To sum up all the probabilities in table 7 as we did with table 6 would yield an equation

similar to equation (60) but with 31 terms. Using the method to develop equation (62) the
probability of the transistor ensemble, QO, opening is

QO = 1-[ 1-q(T)1 - T1-q (L)] - [1-q (CR)] - [1-q (R))? (63)

A series parallel network with known probabilities of opening and shorting QO and
QS can be constructed. See figure 25.
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Q0,08 Q0,08

QO0,0S Qo0,Qs

Figure 25. Transistor Ensemble

This looks very much the same as the network in figure 11 which had a probability of
short, Qg and probability of open, 9, and a probability of success equation

P = (1-92F-(1-(1-q))° (31)
This equation cannot be used on figure 25, The problem is that in equation (31), 22
me

and q  are mutually exclusive events, Both a short and an open cannot occur in the
element.

If the blocks in figure 25 represented just transistors then equation (31) is valid. If QS
is probability of short and QO is probability of open the general equation for the term re-
lating the probability of either event or both occurring in one block is

QO +5)=Q0+Q5-Q (0, 5) (64)
Now Q(O, S) is a joint or conditional probability. In the case of mutually exclusive

events this term is zero. Whether the events are mutually exclusive or not Q (O + S) must
be between zero and one.

0<Q(0+5)=Q0+QS -Q (0, S)<1 (65)

If it can be shown that the sum of QO and QS for figure 25 exceeds one, then the events
must not be mutually exclusive,

To show that QS approaches 1 as time becomes quite large, it can be shown that one
term of equation (62) approaches zero. For example

-t/TC
(-9 (C)) =1-(1-e

ThereforeQS « 1 ast ~o

Y3 ~o0ast~ = (66)

Similarly QO - 1 ast «w
Therefore QS + Q0 -2 ast -«

Equation (31) can be modified to account for the fact that qP and q_ are not mutually
exclusive. This is done by writing the right hand side of equation (31) thus:

P =1-(97-q*-(1-(-q)1? (67)
The probability of failure due to opens, QOO, is
QOO = (297 - q.*) (68)
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The probability of failure due to shorts, QSS, is
Qss = [1-(1-%):]a (69)

Since QSS and QOO are not mutually exclusive, the probability of failure of the quad
can be written as

Q = QOO + QSS - QOO - QsS (70)
The probability of success is then

P=1-Q (71)
P = 1-QOO - QSS + QOO0 - QSS (72)
P=1-(2q°-q¢-(kQ1-q))
b "% 9 73)
+(297 -q ) [1-(1-q)?
= (1-q *)? +(292-q " - 1) [1-(1-q)1? (74)
= (1-97P - (1 - g 2P - [1-(1 - q)*)° (75)
P ={1-11-(1-q 1%} (1-q ) (76)

Equation (76) is used to evaluate the reliability of figure 25 which is block Il of figure
24,

CONCL.USIONS

The design engineer can use these methods to predicate the reliability of redundant
networks, He can choose the network which yields the level of reliability needed without
undue complexity. The design engineer would not design a two kilowatt transmitter when
50C watts will suffice and he would not design equipment with a higher reliability than is
necessary,

To improve the reliability of the large airborne computer mentioned earlier, not every
circuit should be made quad redundant. Those circuits, which by their nature lend them-
selves to redundancy, should be redunded first; the resulting reliability calculated, and
further work done as necessary.

Figure 26 is the probability of success plot of the four networks discussed in the re-
port. The results are what was expected. The quad is best followed by the series-parallel,
parallel, and lastly the non-redundant circuit. What purpose is this report if the results
were known beforehand? Previous to this, no one knew how much better the quad was over
the other circuits. It is this ability of being able to predicate the improvement in relia-
bility which makes this work worth the effort. Furthermore, the quad has been analyzed
rigorously, knowing that components can fail in two modes as opposed to failing in one as
has been the case in previous investigations,
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Figure 27 shows the relative effects of redundancy upon large electronic systems. The
1000 and 5000 curves refer to a system employing 1000 or 5000 transistor networks. Each
transistor network is comprised of *he same elements as in the impedance transformer.
The curves demonstrate the effeci of multiplying a number less than one a large number
of times. The probability of success of the 1000 unit system is the probability of success
of the basic unit raised to the 1000th power, The quad becomes very superior to the non-
redundant network while the series parallel unit lies somewhere in between. The 5000
unit is not an unrealistic size as the Air Force has an airborne computer somewhat larg-
er than this presently in production, The decision to use the series parallel or quad for a
particular network depends upon the relative difficulty in designing and fabricating that
network.
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RECOMMENDED AREAS OF FUTURE INVESTIGATION

The application of redundancy to electronic design is limited by our ability to design
redundant networks. The input-output characteristics may be such that active redundancy
cannot be used. However, most pulse or digital circuits are easily adapted to redundant
configuration. Robert Lyons discusses redundant design in his report ‘‘The Use of Triple
Modular Redundancy to Improve Computer ‘Reliability.’’ While triple modular redundancy
is not the same as component redundancy, Lyons’ recommendations are similar to this
author's. Namely, that the design engineer must design reliability into the network primar-
ily by using designs based upon probability theory. Pulse and digital circuits must be in-
vestigated with this concept in mind.

A second area of investigation concerns the paralleling and serializing of electronic
components, In building the quad it was found that the needed value of inductance of two
paralleled inductors could be had when the mutual inductance was additive. If a coil then
failed in open, the only mode of failure, the change in inductance was not excessive, For
example, the average value of the eight coils was 172 microhenrys. The average value of
the paralleled inductors was 120 microhenrys. The change from 120 to 170 microhenrys
was not so great as to degrade performance. Along this same line, it might be necessary
to use three resistors rather than two in order to reduce the net change in resistance
when an open occurs. Investigation along these lines would be very fruitful.
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